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A New Approach to Finding Natural Chemical Structure Classes
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In modern drug discovery, large compound libraries need to be compared and the diversity of
compound libraries needs to be analyzed. Classification algorithms are important tools for
accomplishing these tasks. In this paper, a chemical structural scaffold based classification
approach is reported. The goals of the approach are to find natural structure families from a
large (millions of entries) compound library within a feasible time period and to view the library
in two-dimensional data space using chemically meaningful methods.

Introduction

To design general and focused combinatorial libraries
for the purpose of identifying new lead scaffolds, one
needs to analyze the chemical diversity of large, real,
or virtual libraries of compounds (typically hundreds of
thousands or millions). This is a difficult and contro-
versial task. To evaluate a chemical compound library,
the following questions are raised: (1) How diverse is
the library? (2) How are the structures distributed in
the chemical space? (3) What are the structural differ-
ences between a compound library and a recognized
drug? (4) What are the structural differences between
a combinatorial library and the libraries in the com-
pound inventory? (5) Which compounds are structurally
closest to existing drug candidates or leads?

To answer these questions, one can either classify a
library to analyze the number of compound classes and
their distributions or map the compounds of a library
to two- or three-dimensional space in order to visually
review how the compounds are grouped.

Compound Classification. The term cluster analy-
sis (CA) was first used by Tryon in 1939.1 The term
actually encompasses a number of different classi-
fication algorithms. Since its introduction, many CA
algorithms have been reported. They belong to two
categories: hierarchical clustering and partitional (non-
hierarchical) clustering. Hierarchical clustering re-
arranges objects in a tree structure. A nonhierarchical
cluster algorithm, the Javis—Patrick algorithm (also
known as nearest-neighbor cluster algorithm), is com-
monly used to cluster chemical structures.? Convention-
ally, approaches using topology-based compound clas-
sifications involve the following steps: (1) computing
descriptors from connection tables, (2) selecting princi-
pal components from the descriptors by means of
principal component analysis (PCA)3 or factor analysis
(FA),* (3) normalizing the principal descriptors so that
they are comparable in value, (4) selecting a similarity
or distance measurement to compute the similarity or
distance between two structures, and (5) choosing a
cluster algorithm to group structures. Willett has
published a very interesting review of this area.®
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Taraviras, lvanciuc, and Cabrol-Bass have recently
reported a comparison of the most recently available
structure clustering methods.®

Without the correct input, clustering algorithms can-
not correctly locate natural structural families. The
clustering results depend on many parameters, such as
descriptor selection, data normalization, similarity met-
rics, etc. Hierarchical clustering algorithms do not
reveal the number of structural families and how they
are distributed until a hierarchical threshold is chosen.
However, the selection process for choosing the thresh-
old is not rationally determined. Nonhierarchical clus-
tering methods, such as K-mean and K-nearest-neighbor
algorithms, produce even more arbitrary results. K-
mean clustering algorithms assume the user knows the
number of the clusters before clustering. This obviously
is not the case. Since the computing complexity of a
K-mean algorithm is factorial to the number of data
points, the number of computing iterations has to be
limited to make the computation viable. However, the
condition for potentially unlimited iterations is inherent
in the fact that the user must specify the number of
clusters before clustering. K-nearest-neighbor algo-
rithms may produce better results in comparison with
K-mean algorithms, but it still asks the user to choose
the number of nearest neighbors. This is typically
unknown to the user. Therefore, the results of K-
nearest-neighbor algorithms are still rather arbitrary.

Mapping a Compound Library. Using the concept
that a picture is worth a thousand words, we will
approach the understanding of library diversity by
representing the library as a picture. To map a com-
pound library to a two-dimensional graph, multidimen-
sional scaling (MDS)” and neural network (NN)& ap-
proaches can be used. A structure can be represented
as an array of structural descriptors (numbers). If there
are n (n > 3) descriptors, then we say the structure is
represented as a point of n-dimensional space. MDS is
an approach for projecting a point of n-dimensional
space to two-dimensional space, which we can then
view.

MDS is not so much an exact procedure as rather a
way to “rearrange” objects in an efficient manner. It
allows one to arrive at a configuration that best ap-
proximates the observed distances. It actually moves
objects around in the space defined by the requested
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number of dimensions and checks how well the dis-
tances between objects can be reproduced by the new
configuration. In other words, MDS uses a function
minimization algorithm that evaluates different con-
figurations with the goal of maximizing the goodness
of fit (or minimizing “lack of fit”).°

As an NN mapping method, the self-organizing map
(SOM) is effectively a vector algorithm that has been
quantized. It creates reference vectors in a high-
dimensional input space and uses them to approximate
the input patterns in an image space in an ordered
fashion. It does this by defining local order relations
between the reference vectors so that they are made to
depend on each other as though their neighboring
values would lie along a hypothetical “elastic sur-
face”.1011 The SOM, by preserving local features, is
therefore able to approximate the point density function
p(x) of a complex, high-dimensional input space, so it is
presented as two dimensions.

As a simple method, we can use PCA to represent a
library with a two-dimensional graph without losing too
much information. We can select two principal descrip-
tors from n (n > 3) descriptors. This requires that the
two principal components can explain at least 85% of
the data. It is normally hard to reach such a criterion.

These dimension reduction approaches do not always
work well. To validate the dimension reduction results,
we need a technology to permit us to map a graphed
point to its structure drawing. This process involves
chemical structure related data visualization technol-
ogy, which is offered commercially.? However, even if
we use this technology and can make some progress in
solving the problems of the dimension reduction ap-
proach, that approach is still lacking. The mapped
dimensions have no chemical meaning. Therefore, bench
chemists cannot understand the new dimensions.

In recent years, new techniques for chemical structure
diversity analysis continue to be reported.’3=15 |t is
expected that more novel and powerful approaches will
emerge in coming years. In this paper, we propose a
scaffold-based classification approach (SCA) in order to
classify compound libraries. It is based on compound
topological scaffolds. In addition, we propose new ways
to graph the chemical diversity of compound libraries
in a chemically understandable manner. By means of
SCA, it is possible to find natural chemical structural
families. The relationships between identified structural
families can be viewed in two- or three-dimensional
space, and each dimension can have a chemical expla-
nation. For example, on the basis of the result of SCA,
a two-dimensional chemical space can be defined by
“structural complexity” as the X axis and by “cyclicity”
as the Y axis. Compounds that have larger numbers of
atoms and bonds will have greater values of structural
complexity. In the same structural class, compounds
that have a larger number of ring bonds will have
greater values of cyclicity.

Scaffold-Based Classification Approach (SCA)

Most conventional approaches for clustering chemical
compounds are based on structural descriptors. The
SCA does not use structural descriptors to classify
compounds. It groups compounds into the same class if
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Figure 1. Deriving a structural scaffold.

they share the same topological scaffold or class center.
But what is a topological scaffold? Before defining a
topological scaffold, we introduce the concepts of “ring
bond” and “linker bond” with the following definitions:
(1) A ring bond is a bond in which the two atoms in the
bond are both in the same ring. (2) A linker bond is a
bond that is not itself a ring bond. However, both of its
two atoms, directly or indirectly, connect to a ring or
rings. (3) A chain bond is a bond that is neither ring
bond nor linker bond. On the basis of these definitions,
a topological scaffold is defined as follows: (4) A
topological scaffold is a structure that has ring bonds
and linker bonds but has no chain bonds.

Figure 1 illustrates the definition of a topological
scaffold.

Definition 4 permits a computer to consistently derive
scaffolds from chemical structures. However, it should
be noted that not all chemists would agree with the
specified definition.

The above definitions cover all cyclic compounds.
However, the SCA must treat acyclic compounds in
special ways as follows: (1) For saturated acyclic
compounds, their scaffold is Q—Q (where Q is any
heteroatom). If there are no heteroatoms, then their
scaffold is C—C. (2) For unsaturated acyclic compounds,
their double bonds and triple bonds are considered as
ring bonds. Table 1 lists the examples of these special
treatments.

Unsaturated bonds (normally double bonds) that
directly connect to a ring system are recognized as parts
of that ring system, since they change the chemical
behavior of the ring system. An example is shown in
Figure 2.

Classification Processes. The SCA classifies com-
pound libraries in the following steps.

Step 1. It finds all nonredundant scaffolds. The
scaffold for each structure is derived by pruning all
existing side chains. Hydrogen atoms are not recognized
as side chains. If the resulting scaffold is not in the
scaffold list, then it is appended to the scaffold listing.

Step 2. It sorts the scaffold list. The scaffolds are
sorted in ascending order of structural complexity. The
structural complexity is computed as follows:

(2) A reference vector V, is found in order to calculate
the structural complexity for every scaffold. V, is the
virtual scaffold vector. It consists of four structural
descriptors: (1) the maximum number of the smallest
set of smallest rings (sssrs), (2) the maximum number
of heavy atoms, (3) the maximum number of bonds,
where covalent bonds between hydrogen atoms and
other atoms are excluded and, (4) the maximum sum of
heavy atomic numbers.



Finding Natural Chemical Structure Classes

Table 1. Acyclic Compound and Their Sacffolds

No. Acyclic Compound Scaffold
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(2) These four structural descriptors are computed for

every structure “i” and stored in vector V;.

(3) The complexity for scaffold S; is calculated as

Vi + VIl = [IV; = VI 1)
IV, + VI

complexity(S;) =

(4) The scaffolds are then sorted in ascending order
by complexity. After the order position of a scaffold in
the scaffold list is sorted, the position is specified as
its class ID. A scaffold represents a topological class
center. Therefore, a scaffold ID is also a class ID (CID)
that is associated with its complexity. Scaffold i + 1 is
structurally more complicated than scaffold i. Com-
plexity differences will thus also show structural dif-
ferences.

Step 3. It classifies structures. Every structure will
have its class ID, which is its scaffold (class center)
number or position in the scaffold list. The similarity
between the structure and its scaffold is the class
membership of the structure. Since the differences
between a structure and its scaffold are due to side
chains, then those structures with fewer side chains
have higher membership values. Therefore, membership
is defined as “cyclicity”.

Membership is based on the following structural
descriptors: the sum of heavy atomic numbers (a), the
number of rotating bonds (r), the number of 1° nodes
(d1), the number of double bonds (db), the number of
triple bonds (tb), the number of 2° nodes (d1). If S; =
{a, r, d1, db, tb, dI} represents a scaffold, and S; =
{a', r', d1', db’, tb’, dI'} represents the structure be-
longing to that scaffold, then membership of the struc-
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Figure 2. Compound and scaffold. When a double bond is
directly attached to a ring, it is recognized as the part of the
ring and it is not recognized as a chain bond.

ture is calculated as follows:

||Si + Sc“ - ||Si - Sc|| )
I1S; + Scll

membership(S;_.,) =

Note that steps 1 and 3 require a structure match
algorithm. There are four options to match structures:
(1) topological match, where no atom types and bond
types are recognized; (2) bond-topological match, where
only bond types are recognized; (3) atom-topological
match, where only atom types are recognized; (4)
chromatic match, where both atom and bond types are
recognized.

These options control the classification results. Option
1 will yield the smallest number of classes because it
ignores atom types and bond types. Option 1 will group
benzene, hexane, and pyridine in the same class. Only
option 4 can recognize these as different scaffolds.

Results

The SCA has been implemented in C/C++ on Win-
dows 95, Windows NT, and UNIX platforms. The
executable program is callable by ISIS/Base through
ISIS/PL. Using the SCA, we have classified compounds
selected from the four following databases: ACD (250 468
structures); NCI (126 554, MDL 1994); CMC (only 4591
oral drugs have been taken into account); and MDDR
(only 6347 launched or preclinical compounds have been
taken into account). Note that many compounds that
are collected in the CMC and MDDR databases are
excluded because they are nonoral drugs. These include
compounds such as radiopague agents, imaging agents,
dental resins, veterinary compounds, sweeteners, and
peptides or proteins. It requires 1 h 42 min to classify
all 387 960 structures on an NT laptop (Compagq,
Armada E700).

A total of 57 186 classes were found from ACD, NCI,
CMC, and MDDR databases. The class centers for
computing scaffold complexities are as follows: (1)
maximum number of smallest set of smallest rings is
33; (2) maximum number of non-hydrogen atoms is 183;
(3) maximum number of non-hydrogen-involved bonds
is 206; (4) maximum sum of atomic order numbers is
1247. The classification results are depicted in Figure
3. They are based on using Spotfire V5.020
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Figure 3. SCA diversity map. The SCA diversity map can be used to compare ACD (red), NCI (green), MDDR (yellow), and
CMC (blue) databases. It is easy to see that orally active drugs are distributed in a narrower region compared with other compound
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Figure 4. Chemical diversity patterns in the SCA map.

In Figure 3, the X axis represents the complexity and
the Y axis represents the class membership. Because
the greater values of a membership correspond to all
higher ring bond rates, we assign the Y axis the label
as cyclicity. Both the X and Y axes are normalized to

20000 40000 50000
Complexity

100%. Blue dots represent CMC compounds, yellow dots
represent MDDR compounds, green dots represent NCI
compounds, and red dots represent ACD compounds. It
is clear that chemical diversity increases among the
databases in the order CMC < MDDR < NCI < ACD.
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In Figure 3, the most complicated compound is an
ACD compound that is located in the upper-right corner
as circled. It is actually a DNA molecule.

The SCA class map has four corner regions that
represent four classes of compounds as follows: (1) the
A (upper left) corner represents the compounds with
simpler rings and fewer side chains; (2) the B (bottom
left) corner represents the compounds with simpler
rings but longer and more complicated side chains; (3)
the C (upper right) corner represents the compounds
with more complicated ring systems but fewer compli-
cated side chains; (4) the D (bottom right) corner
represents the compounds with more complicated ring
systems and more complicated side chains.

The D corner is almost always empty because it
represents compounds with the most complicated ring
systems and many side chains. These are very hard to
synthesize. This region is probably not very interesting.
Most “chainlike” compounds are located around the B
corner.

As might be expected, drugs are compounds with
moderately complicated rings and side chains. At the
top of Figure 3, the compounds represented by a straight
line (cyclicity of 100%) are pure scaffolds. These com-
pounds have no side chains. There are a number of
drugs reported in the CMC database that are pure
scaffolds.

Since the scaffolds are sorted by ascending complex-
ity, the compound class ID (CID) that is also associated
with complexity is in ascending order. In other words,
the greater a CID is, the greater the scaffold complexity
will be. When the complexity is replaced with CID on
the X axis and the upper half of Figure 3 is closely
examined, a number of interesting curves emerge, as
shown in Figure 4. These curves are designated as
chemical diversity patterns. To understand why these
curves are formed, seven of the curves of Figure 4, as
marked, are examined closely. The results are presented
in Table 2.

It is clear that each curve represents a set of com-
pounds with a common side chain or side chains but
different scaffolds. By reviewing the chemical diversity
pattern map, we can conclude the following.

(1) Chemical diversity space is discrete, not continu-
ous. Therefore, some “diversity holes” will never be filled
and should not cause concern.

(2) Some diversity patterns, such as curve 1 in Figure
4, may not be of interest to medicinal chemists because
they are not “druglike”.

(3) Some diversity patterns, such as curves 2—4 in
Figure 4, are druglike because many CMC database
drugs are aligned on these curves (colored by blue). For
scaffolds with missing compounds on these curves,
medicinal chemists are advised to add corresponding
side chains or scaffolds to reconnect the broken diversity
patterns. A greater opportunity to discover new drugs
can thus be provided.

(4) The diversity patterns become broader at lower
cyclicity values because there are more ways to add
side chains to a scaffold. For example, if we have two
carbon atoms and one oxygen atom to add to a scaffold,
we will have eight different ways of implementation:
{~c,~C,~0}, {~C-C,~0},{~C—-0,~C},{~0—-C,~C},
{~C-C-0}, {~C(C)—-0}, {~O0—-C—-C},{~C—-0O—C}). To
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Table 2. Some Chemical Diversity Patterns (Examples Are
from ACD Database)

Pattern # | Meaning Example

O

1 Single Li substituted

compounds

2 Single methyl substituted

compounds, some times

O
SRR
PO

"”C/}”Q”_

ethylene-substituted

compounds

3 Single primary amine

compounds

4 Single carbonyl group or

alcohol group compounds

) Single fluoride substituted

compounds

6 Double methyl substituted or

single ethyl substituted

compounds
7 Single primary amine and %
single methyl substituted ~
N7 N
compounds

P
N N

simplify this example, we have not considered the
positions on a scaffold and the bonding types. As we see,
however, fuzzier diversity patterns mean that the
chemistry in that region is getting more complicated.

For a smaller compound library (less than a few
thousand compounds), the diversity patterns are not
presented clearly because the number of scaffolds is too
small to provide continuous curves. However, if the
diversity patterns of a large library (over 10 000 com-
pounds) are not apparent, the library is either very
biased or not diverse.

The diversity pattern maps can also show structural
family distribution. In the CMC database, one of the
largest classes is the benzene-scaffold cluster. This
cluster has 459 compounds; most of them are anesthetic,
antiadrenergic (B-receptor), bronchodilator, anorexic,
antineoplastic, adrenergic, analgesic, and antihyper-
tensive drugs. Another large class contains steroid
compounds (see Figure 5).

By examination of the diversity patterns (see Figure
6), it can be seen that many oral drugs in the CMC
database have a single hydroxyl, carbonyl, or methyl
group while the oral drugs that have a single primary
amine or single fluoride group are relatively rare.

A compound library can be mapped in many different
ways depending on the focus of the scientists. Synthetic
chemists typically prefer scaffold-based mapping be-
cause they are considering how to make compounds.
Scientists who are more involved in drug design may
want to see a map that is based on other structural
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Figure 6. Diversity patterns of CMC oral drugs.

descriptors. For this reason, the SCA also outputs the
following structural descriptor values: (1) AE, average
electronegativity; (2) HD, number of H bond donors; (3)
HA, number of H bond acceptors; (4) AB, number of
aromatic bonds; (5) ATMS, number of non-H atoms; (6)
BNDS, number of non-H-involved bonds; (7) SSSRS,
number of smallest set of smallest rings; (8) AZ, average
atomic numbers; (9) RB, number of rotating bonds
Normally, we keep cyclicity as the Y axis and switch
descriptors for the Xaxis in order to view the different

types of diversity patterns. By comparing a proposed
library against druglike libraries, such as the CMC and
MDDR oral drug libraries, we are able to visually filter
out non-drug-like compounds that fall outside the drug-
like range for a specific descriptor. For example, AE in
most CMC and MDDR oral drugs ranges from 2.6 to
3.0 while AE in NCI compounds ranges between 2.41
and 3.46. However, the majority of NCI compounds have
an AE range between 2.55 and 3.02. Therefore, we
understand that the compounds with AE values out of
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Table 3. ACD Compounds with Minimum and Maximum AE
Values

AE Value Compound
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this range are non-drug-like compounds. To validate
this observation, we examined the compounds that are
out of the druglike AE range and list the examples in
Tables 3 and 4. Obviously, the AE descriptor does have
the capacity to discriminate drug-like compounds from
non-drug-like compounds.

Other descriptors that we use to filter out non-drug-
like compounds through the diversity map are the
number of hydrogen bond donors and the number of
hydrogen bond acceptors. Examples are shown in Fig-
ures 7 and 8. As expected, most CMC database com-
pounds (blue) have less than five hydrogen donors.
However, many compounds in the ACD database have
more than five hydrogen donors. These ACD compounds
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Table 4. NCI Compounds with AE Values beyond Range of
2.55—3.02

AE Value Compound
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are sugar-like, nucleic-acid-like, or peptide-like com-
pounds. Again, the number of hydrogen bond acceptors
of the ACD compounds ranges from 0 to 84 while the
number of hydrogen acceptors of the CMC drugs ranges
from O to 8.

It is also interesting to examine the number of
smallest set of smallest rings (sssrs). As shown in Figure
16, the most complicated polycyclic compound in the
ACD database is fullerene C60. The power of the sssrs
descriptor permits it to easily identify non-drug-like
compounds because they possess too many rings. It has
been reported that the best druglike ranges for sssrs is
from O to 4. Most marketed drugs have less than six
rings.’® The sssrs values, however, in the ACD com-
pound database, range from 0 to 31.

Finally, we found that the average atomic number,
excluding H atoms (AZ), has a capacity for distinguish-
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Figure 8. Comparison of structure databases of ACD (red), NCI (green), MDDR (yellow), and CMC (blue) databases on the

distribution of humber hydrogen bond acceptors.

ing the compounds that have a high content of heavier
or lighter heteroatoms. Some interesting compound
examples are listed in Table 5. We were immediately
able to identify the small molecule with the longest
chain in the cyclicity—rotating bonds map. This mol-
ecule is from the ACD database, and it has a benzene
ring with a side chain as long as 180 single bonds.

Discussions

Most popular structure clustering algorithms are
based on structural descriptors. However, medicinal
chemists intuitively group their compounds based on
scaffolds and functional groups. This difference in
approach hinders the use of clustering results by
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Table 5. ACD Structures with Minimum and Maximum AZ
Values

AZ Structure
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medicinal chemists. The SCA was developed to elimi-
nate this difference. Also, the SCA seeks to unify
chemical library classification and mapping into one
computation task. The purpose of this approach is to
provide an efficient and intuitive tool for medicinal
chemists to analyze and compare the drug-likeness and
chemical diversity of large-scale libraries.

On the basis of our experience, the SCA is much faster
than conventional approaches when classifying the
same size library. Furthermore, the SCA can classify
multiple libraries together for comparison purposes.
These functions allow us to visually determine if two
libraries are complimentary. The “diversity holes” can
be identified from discontinuities in the diversity pat-
terns in the SCA map (see Figure 4). In addition, a
chemist can fill the “diversity holes” by adding scaffolds
or placing functional groups on specific scaffolds by
examining the peripheral environment in the SCA map.

Scientists from different disciplines may have very
different understandings of the scaffold concept. In
graph theory, a topological scaffold is a structure that
has no side chain. To synthetic chemists, a scaffold
might be a structure that can be made by a feasible
chemical synthetic reaction. To biochemists, a scaffold
might be a structure that can be a key component for a
biologic target through assays. Therefore, for a given
chemical structure, there can be many scaffold parti-
tions. Figure 9 shows an example.l” A biologic scaffold
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is associated with a biologic target. For a given com-
pound, its biologic scaffold partition can be different
when the compound is tested against a different target.
Similarly, a compound may have a different synthetic
scaffold partition when it is associated with a different
synthetic strategy. If a topological scaffold covers the
most common parts of biologic and chemical scaffold
partitions, then the SCA works well. Otherwise, the
SCA results may produce unsatisfactory results.

As shown in Figure 10, according to the SCA, com-
pounds A—D have four different scaffolds (SA—SD).
Note that scaffolds SC and SD are substructures of SA
and that SA and SB are very similar (differing only in
a CH; group). A chemist may suggest that we should
group compound A together with compound B because
SC is the substructure of SA. However, the further
question is, would you as well group compound D with
compound A? One may argue that SD is the substruc-
ture of SA, but it is not significant enough to group A
and D together. For a given target, if the binding site
has enough space to tolerate one more CH; group, then
SA and SB should be considered as the same. Conse-
guently, compounds A and B should belong to the same
class, and the scaffold will be neither SA nor SB. The
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scaffold for compounds A and B is a nonspecific struc-
ture (the linker length is variable).

Owing to this type of problem, the current SCA can
potentially produce too many classes and too many
singletons. To try to correct this problem, we can group
structures together. We can try this if their scaffolds
are highly similar or if some scaffolds are the substruc-
tures of the other scaffolds, based on a similarity
threshold or on substructure search rules. However,
having tried this, we find that we can potentially group
irrelevant compounds together and it is difficult to
determine a scaffold for a class.

Another way to solve this type of problem is to use a
set of predefined scaffolds. This strategy is similar to
the method of LeadScope.!® This approach makes chemi-
cal sense, but it requires human intervention, and it is
biased on the basis of chemical experience. We believe
that further improvements in the SCA will yield a
solution to these problems.
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